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Preface

This report describes the research carried out during six month of 2008-2009

in the Robotics and Manufacturing Automation (RAMA) Laboratory of Duke

University. The major effort during this time was the development of a theoret-

ical approach for using samples of stochastic processes for solving the stochastic

optimal control problems. This effort is described in the following sections.

During this time period a technical paper dealing with force field estimation

based on video data was also prepared and submitted for publication considera-

tion in a Special Issue on Physical System Modeling of the Journal of Dynamic

Systems, Measurement, and Control, Series G of the ASME Transactions. The

submitted paper’s abstract is attached in Appendix A. Publication decision

on this paper is still awaited. A scale-down copy of the poster presented at

the CMPI Symposium on Multi-Scale Modeling of Host/Pathogen Interactions,

June 23 - 25, 2009, Pittsburgh, PA, is attached as Appendix B.

The financial support provided by the United States Army Research Office

for the Short Term Innovative Research (STIR) project entitled ”Stochastic

Model-Based Control of Multi Robot Systems” under Grant Number W911NF-

08-1-0503 is gratefully acknowledged.
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Abstract

In this report, we consider control of single- and multi-robot systems as an

optimal control problem. Solution of this problem may be of enormous com-

plexity because of a large-number of robots, a large number of redundant states,

and environmental uncertainties. Motivated by estimation methods based on

statistical sampling and employed for solving complex estimation problems, we

explore the possibility of using stochastic process samples for computing the

optimal control.

In our work, the state of an individual robot is described by the state com-

posed of discrete and continuous state variables. We model the robot using a

hybrid automaton and corresponding system of partial differential equations de-

scribing the robot’s state probability density function. For solving the optimal

control problem, we use the minimum-principle for partial differential equations

to obtain the Hamiltonian that characterizes the optimal control. However, hav-

ing in mind that the Hamiltonian evaluation based on the partial differential

equations is computationally expensive, we propose and explore strategies in

which the Hamiltonian evaluation is based on samples from stochastic processes

generated from the individual robot model. We also show that if the analysis is

limited to the so-called process self-adjoint dynamical systems, the Hamiltonian

evaluation can be simplified.

Using computational statistical methods opens the possibility to solve con-

trol problems in robotics in real-time within the stochastic optimal control

framework. This possibility also depends on processor design that implements

computational methods. While the design of such processors is a separate issue,

ideally it should be driven by stochastic processes, such as noises in electronic

components. This concept can ultimately provide miniature computational

hardware for solving complex multi-robot control problems, in which compu-

tations are driven by laws of statistical physics.
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Nomenclature

R,Rn - set of real numbers, set of real number vectors of dimension n.

Q - set of discrete states, i.e., integer indexes {1, 2, 3, . . .}

Uad - set of admissible control.

ρ(x, t) - probability density function (PDF) of the hybrid state at time t. This

variable is a vector of functions, it depends on x ∈ X and t ∈ R, but x

and t are frequently omitted in expressions.

ρi(x, t) - the PDF component corresponding to the discrete state i, i ∈ Q.

π(x, t) - the adjoint state distribution

π̄ - the discrete approximation of the adjoint state distribution.

φ(x, t) - the adjoint state PDF

Pi(x, t) - the probability of the discrete state i, i ∈ Q.

Pπi (x, t) - the probability of the discrete adjoint state i, i ∈ Q.

Ft - the transition rate matrix.

λij - the component of the transition rate matrix [Ft]ij = λij .

Fu - the transition rate matrix that depends on control vector u, u ∈ Uad.

F∂ - the component of the linear operator F corresponding to the vector fields

fi of discrete states i ∈ Q.

H(ρ, u, t) - the PDF, the control and time dependent Hamiltonian, ρ, u and t are

frequently omitted.

u∗ - the optimal control

Eρ - the expected value with respect to the state PDF ρ.
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Stochastic Model-Based Control of

Multi-Robot Systems

1 Introduction

A multi-robot system is a collection of robots designed to perform a specified

task. Collection of all relevant variables uniquely specifying the individual robot

state, such as position, status, actuator powers etc., we call the state. In this

respect, a solution of a multi-robot control problem assumes that the update

of each individual robot state is in accordance with the specified multi-robot

system task. The update is defined by the specific control approach or ar-

chitecture. In this research, we have developed an approach in which the task

specification is provided in the form of a cost function that should be maximized

(or minimized) by the multi-robot system. Such cost functions can relate to the

presence of robots at specific locations, or to the amount of information that

can be gathered. It may also include other factors such as energy consumption

or amount of communicated information.

From this perspective, the multi-robot system control can be considered as

an optimal control problem resulting in the update of individual robot states

leading towards a minimum (or maximum) of the cost function defining the

multi-robot mission task. Solution of this problem may be of enormous com-

plexity because of a large number of robots, a large number of redundant states,
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as well as existing environment uncertainties. In this report, we discuss an

approach to deal with this complexity computationally for both single- and

multiple-robot systems.

For many years it has been known that the optimal control and optimal

estimation problems are dual [6]. For example, we use the optimal control

theory to derive linear quadratic regulator (LQR), and in the same theoretical

framework we can derive the Kalman filter (KF). In the first case we design the

controller that minimizes the quadratic cost function over the state space, and in

the second case we design the estimator minimizing the cost function involving

state space estimations. Having this in mind, it is expected that estimation

methods based on statistical sampling, employed for solving complex estimation

problems [12], can be also exploited for solving complex control problems for

single and more important multi-robot systems under presence of uncertainty.

Along this idea, Kappen et. al. [7, 13] used stochastic differential equations

to model individual agents. Based on this description, it is possible to re-

late Hamilton-Jacobi-Bellman partial differential equation with samples of the

stochastic process trajectories and use the samples to define the stochastic op-

timal control of multi-agent systems. In this framework, the state of individual

robots is continuous. However, the state of real robots is generally described

by a combination of continuous and discrete variables, i.e., by a hybrid state.

Therefore, it is more natural to describe the robot behavior using a hybrid au-

tomaton [2]. The automaton describes the discrete and continuous variables

change in time, which depends on events influencing the robot behavior. In

the case of a large-size multi-robot population, it becomes highly complex to

predict events from the robot local environment. Because of that, we model a

large-size robots’ population considering the stochastic hybrid model and study

how it can be controlled.

7



In this research project, we consider a problem in which the presence of a

large-size robot population, in a desired region of operating space, is maximized.

This problem is formulated in the hybrid system framework in [11]. Its solution,

based on the minimum principle for partial differential equations, is presented

in [9, 10], but it is solved numerically only in the case when the presence of

the robots is maximized along one dimension (1D). The difficulty in developing

more realistic 2D control is rooted in the fact that that the Hamiltonian, which

defines the optimal control, includes integral terms that depend on the solution

of a system of partial differential equations (PDE). This system of PDEs is in

general difficult to evaluate. To overcome this difficulty, we recognize that the

PDE system solution contributing to the Hamiltonian is related to the stochastic

process that can be computationally generated. Consequently, we propose to use

samples of the stochastic processes to evaluate the Hamiltonian components. In

this way, our approach is considerably different from stochastic optimal control

work presented in [8]. There the stochastic processes have been used only as an

analytical tool to map stochastic process to be controlled into the finite state

space, in which the optimization is performed.

The benefit of using solution based on sampling, i.e, computational statisti-

cal methods, is that the control problems in robotics could be solved efficiently

(in real-time) in an optimal control framework. This possibility also depends

on the ability to implement sampling and computations with samples into the

processor computing the control. While the design of such processors is a sep-

arate issue, ideally it should be driven by real stochastic processes such as a

noise in electronic components. This concept can ultimately provide miniature

computational hardware for solving complex multi-robot control problems. In

this respect, the ultimate processor will be a system in which computations are

based on laws of statistical physics.
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In Section 2 of this report we discuss hybrid systems modeling and stochastic

optimal control framework applied to robotic systems. Section 3 introduces a

computational method for computing evolution of the state probability density

function (PDF) of our model. In this section we compare the obtained results

with the solution previously obtained from the PDE system describing the same

evolution. Section 4 describes a computational method for evaluation of adjoint

state distributions. Section 5 considers a special case of the process self-adjoint

systems. Conclusion and suggestions for future work are provided in the last

section.
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2 Modeling and Control Framework

In the modeling framework we consider, the state of an individual robot at time

t is uniquely defined by the couple (x(t), q(t)), x ∈ X, X ∈ Rn, q ∈ Q,Q =

{1, 2, ...N}. While in the discrete state (mode) k ∈ Q the continuous state of

robot obeys differential equation ẋ = fk(x, t). We also assume that switching

among discrete states, say from the state k ∈ Q to the state j ∈ Q, (k 6= j)

is described by stochastic transition rates λkj , and that x(t) is a continuous

function of time. In other words, the continuous state just before the discrete

state transition x(t−) is equal to the state x(t+) after the state transition. This

very general model of individual robot is illustrated in Fig. 1 and the modeling

framework we are applying here is detailed in [10].

Recognizing that the state of the individual robot is composed of discrete

and continuous components, the state probability density function (PDF) is

a vector of functions ρ(x, t) = [ρ1(x, t) ρ2(x, t) . . . ρN (x, t)]′. Each component

ρi(x, t) corresponds to the discrete state i, and the symbol (’) denotes vector

q=1

q=2

λ 12

λ1K

λ2k

λkK
λKk

λ1k

y(t) = C(x)

 .
x(t) = f 2 (x(t))

y(t) = C(x)

 .
x(t) = f 1 (x(t))

y(t) = C(x)

 .
x(t) = f k (x(t))

y(t) = C(x)

 .
x(t) = f K (x(t))

q=k

q=K

Figure 1: Stochastic hybrid automaton model of a robot in the probabilistic
framework: discrete state q; continuous vector x vector field fk, k ∈ Q describes
change of continuous state ; stochastic transition rates λkj , k, j ∈ Q describe
mode switching; y is the measurable output, if the full continuous state of the
robot is measurable, C is unity matrix.
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transpose. The state PDF satisfies

∑
i∈Q

∫
X

ρi(x, t)dx =
∑
i∈Q

Pi(t) = 1, where Pi(t) =
∫
X

ρi(x, t)dx (1)

where Pi(t) is the probability of the discrete state i at the time point t. Let us

define the vector of discrete probabilities P (t) = [P1(t), P2(t), . . . PN (t)]′, then

evolution of the probability vector is given by:

Ṗ (t) = Ft(t)P (t), where [Ft]ij = λij(t) (2)

with matrix Ft defining the transition rates among the discrete states. In gen-

eral, correspondence between the matrix Ft members [Ft]ij and the transition

rates λij is not one-to-one. Assuming that the transition rates depend on a vec-

tor u(t) = [u1(t) u2(t) . . . uM (t)]′ of variables ui, i = 1, 2 . . .M , we can define

the transition rate matrix as a function of the vector u(t), i.e., Ft(t) = Fu(u(t)).

Consequently, the vector of the discrete state probabilities obeys [1]:

Ṗ (t) = Fu(u)P (t) (3)

Moreover, it can be proven [10] that the state PDF obeys the following system

of partial differential equations (PDE):

∂ρ(x, t)
∂t

= F (u)ρ(x, t) = (Fu(u(t)) + F∂)ρ(x, t) (4)

where F∂ is the diagonal linear differential operator. When the operator F∂ is

applied to ρ(x, t), it results in:

[F∂ρ(x, t)]ij =

 ∇ · (fiρi(x, t)), i = j

0, i 6= j
i, j = 1, 2 . . . N (5)
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Taking into account that the state PDF, ρ(x, t), evolution depends on the

vector u(t) we can formulate the optimal control problem in the probability

space using the cost function:

J =
∫
X

w′(x)ρ(x, T )dx (6)

In this respect, the optimal control problem is the optimization problem:

u∗(t) = max
u(t)∈Uad

J = max
u(t)∈Uad

∫
X

w(x)ρ(x, T )dx (7)

Alternatively, to avoid the singular control problems [10] we can also consider

the optimal control that includes the term penalizing the control:

u∗(t) = max
u(t)∈Uad

J = max
u(t)∈Uad

∫
X

w(x)ρ(x, T )dx+ ε

∫ T

0

u′(t)u′(t) (8)

Anyway, the solution of this problem is a sequence of the optimal control u∗(t),

from the set of admissible control Uad, such that the cost function is maximized.

By suitable choice of the weighting function w(x), the cost function can be used

to find the optimal control maximizing probability of robot presence in the

desired region of the robots’ operating space.

The optimal control maximizing the criterion (6) is a special case of a more

general optimal control problem of the evolution equation [4]. Under the con-

dition that the operator F (u) is bounded, i.e., ‖F (u(t))‖ < ∞ the minimum

principle for PDEs can be applied [4]. According to the minimum principle, the

optimal control u∗(t) satisfies:

u∗(t) = arg min
u∈Uad

H(ρ(x, t), u(t), t) (9)

In other words, for the optimal state PDF trajectory ρ∗(x, t), the optimal control
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minimizes the Hamiltonian at each time point. The Hamiltonian is:

H(ρ(x, t), u, t) = 〈π(x, t), F (u)ρ(x, t)〉 (10)

where brackets 〈·, ·〉 denote the scalar product of function vectors defined as:

〈p(x), q(x)〉 =
∫
X

p′(x)q(x)dx (11)

The function vector π(x, t) is the so-called adjoint state distribution and satisfies:

∂π(x, t)
∂t

= −F ′(u)π(x, t) (12)

π(x, T ) = −w(x) (13)

The major limitation of the modeling approach presented here is that the

system of PDEs, derived directly from the model shown in Fig. 1, is difficult

to solve in general for any type of function fi(x) and of more than a single

dimension. Nevertheless, the probabilistic approach we use is of fundamental

importance for establishing mathematically tractable relation for the control of

spatio-temporal distribution of large-size robotic populations. Once we establish

this relation, we can introduce a different type of the propagator which is not

necessarily in the form of differential equations. Ultimately, we can design an

optimal control taking into account local interactions among the robots, or

between the robots and the environment.
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3 Stochastic Sampling Propagator

Evolution of the large-size population probability density function ρ(x, t) is

described by the PDE system (see Section 2, Eq.4). One way to obtain the

evolution ρ(x, t) is to solve the PDE system forward in time starting from an

initial condition ρ(x, 0) = ρ0(x). This numerical solution is sensitive to function

types used in the model, initial and boundary conditions as well as, in finite

element approximation, to the mesh selection. Since numerical errors of solu-

tion accumulate, we also need to limit the terminal time T of the solution. If

the numerical method for the solution is not carefully designed the influence

of approximations and accumulated errors have almost random effect on the

solution.

The Hamiltonian evaluation is instrumental for computing the optimal con-

trol based on minimum principle. In [9, 10] we formulated the algorithm for

the optimal control in 1D case. However, it appears that sensitivity of numeri-

cal solutions contributing to the Hamiltonian evaluation is a limiting factor for

solving the optimal control problem in more than one dimension and with larger

number of discrete states.

Here we propose an approach to compute the evolution ρ(x, t) based on

stochastic trajectories of the hybrid state (x, q) evolution resulting from the

model presented in Fig. 1, Section 2. To account for the fact that the transition

rates can change in time, we assume that the control is a piecewise constant

function of time discretized with the sample time ∆T . The basis for the pro-

posed algorithm is the Gillespie’s stochastic simulation algorithm [5].

To generate the trajectory of (x, q) we need to generate the initial state

(x(0), q(0)) from the state PDF ρ(x, 0) = ρ0(x). Probability Pi(t) of q(t) = i is:

Pi(t) =
∫
X

ρi(x, t)dx (14)
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Therefore, the random variable q(0) = i should be generated from the the

discrete state probability distribution represented by the vector of discrete state

probabilities P (0) = [P1(0) P2(0) . . . PN (0)]′. Symbolically, we will represent it

as:

q(0) = i ∼ P (0) (15)

Once the initial discrete q(0) state is defined, the continuous variable x(0) can

be generated from the corresponding ρi(x, 0) component of the state PDF ,i.e.,

from the probability P of x(t) given that q(t) = i and t = 0

x(0) ∼ P{x|q(t) = i, t = 0} = ρi(x, 0)/Pi(0) (16)

Whenever the discrete state is q(t) = i, the evolution of the continuous state

x obeys ẋ = fi(x). Therefore, generating trajectory (x(t), q(t)) reduces to the

problem of generating the state transitions of the discrete state q(t). Let us

assume that at time t = ts, ts ∈ [(k−1)∆T, k∆T ) the hybrid state is (x(t), q(t))

the time instant at which the state changes tc can be generated based on the

following two rules:

(a) tc = ts + tt, tt ∼ e−t
∑

j λij(k−1), under condition that tc < k∆T . If

the condition is not satisfied, apply rule (b).

(b) tc = k∆T + tt, tt ∼ e−t
∑

j λij(k), under condition that tc < (k+1)∆T .

If the condition is not satisfied increase k by 1. Apply rule (b) until the

condition is satisfied.

These two rules define the time point tc at which the jump from discrete state

i to discrete state j happens, but do not specify the variable j. The state j

needs to be sampled from the discrete state probability density function, i.e.,

from the probability P of q(t+) = j given that q(t) = i provided in the vector

15



of the discrete probability distribution with N − 1 elements:

j ∼ P{q(t)|q(t−) = i} =

[
λi1∑N
n=1 λin

,
λi2∑N

n=1, λin
. . .

λiN∑N
n=1 λin

]
︸ ︷︷ ︸

N−1

(17)

The algorithm just described can be used to generate a single trajectory for

the stochastic model shown in Fig. 1. In the limit of large number of samples,

the normalized density of trajectory points will correspond to the solution the

PDE system given by Eq.4 in Section 2. In this respect, the stochastic simulation

is a computational propagator of the evolution ρ(x, t) and we can denote it as:

∂ρ

∂t
= Fsim(u(t))ρ (18)

To illustrate and verify the algorithm for generating stochastic trajectories

(x(t), q(t)) we use the following 1D and 2D examples.

3.1 1D example

The stochastic model presented in Fig. 2b illustrates the state PDF evolution

of the large-size robot population along one dimension, Fig. 2a in which u1,

u2 and u3 correspond to stochastic rates of commands: move-left, move-right

Figure 2: 1D example
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and stop. In this example k1 = −0.5 and k2 = 0.25. The control u(t) =

[u1(t) u2(t) u3(t)] is computed as the optimal control based on the Minimum-

principle and Hamiltonian presented in the previous section.

The cost function is:

J =
∫
X

w′(x)ρ(x, t)dx+ ε

∫ T

0

u2
1(t) + u2

2(t) + u2
3(t)dt (19)

where ε = 10−7, the weighting w(x) = [0 0 w3(x)]′ and initial condition ρ(x, 0) =

[0 0 ρ3(x, 0)]′ are defined by:

w3(x) =


1√
0.01

exp(− (x−1.75)2

0.01 ), 1.25 < x < 2.25

0, otherwise
(20)

ρ3(x, 0) =


1√

0.02π
exp(− (x−2.5)2

0.02 ), 2 < x < 3

0, otherwise
(21)

The optimal control sequence u∗(t) = [u∗1(t) u∗2(t) u∗3(t)] in the time interval

0 < t < 3 is defined by:

u∗1(t) =

 2, t1 < t < t2

0, elsewhere
, u∗2(t) = 0, u∗3(t) =

 2, t1 < t < t2

0, elsewhere
(22)

The evolution of the state PDF for this system under the control u∗(t) is pre-

sented in Fig. 3. We present only ρ1(x, t) and ρ3(x, t) because under this control

ρ2(x, t) = 0, ∀t.

For the illustration we generated 10 stochastic trajectories of continuous

variable x (see Fig. 4) under the control u∗(t). Evolution of the discrete state

q can be observed from the trend in x. When x decreases the discrete state is

1, and when it stays constant the state is q = 3. It is worth mentioning that

17



Figure 3: The finite element solution of the state PDF evolution for 1D example
under the optimal control u∗(t)

Figure 4: Random set of 10 trajectories resulting from the stochastic simulation
under the optimal control u∗(t)

among these 10 trajectories there is one for which x(t) is constant. The small

pick at around the point 2.5 in the right panel of the Fig.3 at t = 3, confirms

that the probability of such trajectories is non-zero, but it is small.

To obtain the state PDF ρ(x, t), i.e., its components ρi(x, t) at specific time

point t we need to collect points x(t) and estimate components ρi(x, t). It

is obvious that 10 trajectories cannot provide a good estimate of ρ(x, t) For
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this reason, we generated 105 trajectories and computed histogram probability

density function estimate. That means that we discretized the x axis into inter-

vals of the length ∆x and counted how many points fell into a specific region.

Finally, we normalized the histogram so that the estimated ρ(x, t) satisfied con-

dition 1, given in Section 2. Results are presented in Fig. 5. As expected the

match between the numerical PDE system solution and the result obtained from

stochastic trajectories is exact. There are only negligible discrepancies due to

data sampling from finite number of trajectories.
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Figure 5: The stochastic simulation solution of the state PDF evolution for 1D
example under the optimal control u∗(t)

3.2 2D example

The benefit of applying stochastic sampling algorithm and the reason for intro-

ducing the propagator is its ability to propagate multi-dimensional probability

density function. To illustrate that, we apply stochastic sampling for computing

distribution of the model presented in Fig. 6. The model is based on a scenario
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in which a population of small robots is initially concentrated on a location in

the operating region.

The robots are controlled by the stochastic signals produced by aerial robots

(Fig. 6a). Each robot in the population moves in the direction of the active

signal source. Under the assumptions that aerial robots are far away from the

population and that the robot velocity is constant (v = 1), the robotic motion

model is given by the stochastic model shown in Fig. 6c. In this example no

direct transitions between states 1 and 3 exist. The model and scenario are

detailed in [10, 11]

Source 1 Source 3
Source 2

 x2

 x1

 x1

 x2

 x1  x1

θ=π/4 θ=-π/4  θ=0

Population

 a)

 b)
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1 2

.
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T

.

.
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1

x  = v sin(-π/4)

c)

q=3

Figure 6: 2D example

We take the case in which λ12 = 0.5, λ21 = 0.1, λ23 = 0.9 and λ32 = 0.1

are constant. The trajectories are generated based on the proposed algorithm

and sampled at time points t=0, 0.39, 0.79, 1.18, 1.57, 1.96. The samples are

presented in Fig. 7 and the color of dots denotes the time point of the sample.

To produce this result, we used only 100 samples so that difference in the density

of points could be observed.

The transition rates of this example are set without consideration of optimal

control. Ultimately we should be able to control these 2D distributions similar

to the ones in the 1D example presented in the previous section. For comparison,

we also present in Fig. 8 the state PDF evolution resulting from the solution of

the corresponding PDE system. This evolution can help us recognize possible
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Figure 7: The stochastic simulation solution of the state PDF evolution for 2D
example (100 points). The transition rates are λ12 = 0.5, λ21 = 0.1, λ23 = 0.9
and λ32 = 0.1. The time points are t=0, 0.39, 0.79, 1.18, 1.57, 1.96 and are
represented by different colors from pink to black; dimensions along x and y
axis are in km.

but improbable stochastic trajectory realizations presented in Fig. 7. We can

also note the polygon like contour plots resulting from the imprecision of the

numerical solution of the PDE system.

Figure 8: Numerical PDE system solution
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4 Stochastic Sampling for Adjoint State Distri-

bution

The Hamiltonian, corresponding to the optimal control problem Eq.7, Section

2, is defined by:

H(t) =
∫
X

π(x, t)F (u)ρ(x, t)dx = Eρ {π(x, t)F (u)} (23)

and can be seen as an expected value of the adjoint state (or co-state) with

respect to the the state PDF. Assuming that the adjoint state evolution π(x, t)

is known, evaluation of the expected value is easy having in mind that we know

how to generate realizations of the hybrid state stochastic trajectory (x(t), q(t)).

One way to obtain the adjoint state distribution evolution π(x, t) is to solve the

PDE system Eq. 12, Section 2, backward in time starting from the initial

condition π(x, T ) = −w(x). However, we should notice that the complexity of

solving the adjont PDE system is as complex as solving the state PDF evolution

ρ(x, t). Therefore, it is natural to consider an opportunity to solve adjoint state

evolution π(x, t) using stochastic sampling similar to the one presented in the

previous section.

The adjoint set of equation is defined by:

∂π(x, t)
∂t

= −F ′(u)π(x, t) (24)

π(x, T ) = −w(x) (25)

Let us assume that the π(x, t) as well as w(x) are from the state PDF class of

functions, i.e., they satisfy the following property (Property 1):

∑
i∈Q

∫
X

π(x, t)dx =
∑
i∈Q

Pπi (t) = 1 (26)

22



∑
i∈Q

∫
X

w(x)dx =
∑
i∈Q

Pπi (T ) = 1 (27)

where Pπi (t) is the probability of discrete state i at time t assuming that the

π(x, t) is the state PDF of appropriately defined stochastic process. If the

assumption is valid than the discrete state probability evolution backward in

time is defined as:

Ṗπ(T − τ) = F ′u(u)Pπ(T − τ) (28)

but here we find the contradiction. The transpose, F ′u, of the transition rate

matrix Fu does not warranty in general Property 1. Therefore, the adjoint PDE

system does not define a conservation law in the probability space. This is a

major obstacle for the straight-forward design of an algorithm that will evaluate

adjoint state distribution evolution based on the stochastic process similar to

the one for evaluating the state PDF. Consequently, an alternative approach

needs to be considered.

The algorithm for computing solution of adjoint equation has been recently

published in [14]. The algorithm is based on an assumption that the PDE

system describing the adjoint state distribution evolution

∂π

∂t
= −F ′(u)π(x, t) (29)

can be discretized in space and time, so that we obtain a system of linear

equations defining the solution of Eq. 29:

Āπ̄ = b̄ (30)

where π̄ is a vector of values πi(m∆X, k∆T ), i ∈ Q, ∆T is the discretization

sample time and m corresponds to the mth element of the space discretization.

Obviously the matrix Ā is a square matrix of dimension (|M | · |Q| ·K)× (|M | ·
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|Q| ·K), where |M |, |K| and |Q| are the number of discrete element of space X,

the number of the time steps and the number of the discrete states, respectively.

Vector b̄ is equal to 0 except for the elements corresponding to the time T where

b̄ element values correspond to −w(x).

Equation 29 is an algebraic equivalent of Eq. 30. Based on this algebraic

interpretation, π̄ can be obtained as:

π̄ = Ā−1b̄ (31)

Instead of computing the inversion algebraically, the authors of [14] proposed

an algorithm in which Eq. 30 is rewritten in the following form:

π̄ = Āπ̄ + b, A = I − PĀ, and b = P b̄ (32)

with P a being block-diagonal preconditioner matrix. Based on this form the

solution for π̄ can be expanded in a Neumann series:

π̄ = b+Ab+A2b+A3b+ . . . (33)

This series converges only if the spectral radius of A is less than 1. In this case

we can use the Monte Carlo method to sample this infinite series by a Markovian

random walk.

The algorithm we present here is adopted from [14] and the specific values

are adjusted to the special case of dynamical system we are dealing with. The

single realization on the random walk we denote by [p]. The value W [p], or D[p]

denotes the variable W , or D related to the single realization of the random

walk. Variable αk[p] denotes the state of the random walk at the step k from

the realization of the random walk [p]. Introducing this notation, the algorithm
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to compute π̄ is as follows:

1. Initialize W [p] = 1, D[p] = 0 and set t = 1

2. Compute the matrix A, and based on it, define probabilities of state tran-

sitions:

p(i, j) =
|Aij |∑
j Aij

(34)

3. For each random walk [p] that is at time t choose the next state based on

random probabilities p(i, j). If the state αk+1[p] is not the final exit state,

update W [p] and D[p] as follows:

W [p] = W [p]wαk[p]αk+1[p]; D[p] = D[p] +W [p]bαk+1[p] (35)

If αk+1[p] is the final exit state, the random walk is absorbed and we freeze

D[p].

4. Repeat state 3 until all random walks at time step t are either absorbed

or left the time step. If t < m, then let t = t+ 1 and go to step 2.

5. After being done with the last time step m, all random walks are ab-

sorbed. Compute the sample mean of the estimator 1
q

∑q
p=1D[p], which

is approximation of π̄.

Evaluation of the state PDF as well as adjoint state distribution based on

stochastic simulation provides an opportunity for the time efficient computing of

the optimal control. However, computations need to be carefully analyzed since

the adjoint state evolution is not a conservation law and it can result in com-

putational instability. Hopefully, a sacrifice of precision of the adjoint state dis-

tribution computations would not influence much the Hamiltonian evaluation.

Based on our experience, the state PDF evaluation presented in the previous
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section is much faster than the evaluation based on solving partial differential

equations. Similar tests should be done with the computation of the adjoint

state distributions presented in this section. With the design of dedicated hard-

ware, we believe that all this difficulty can be avoided and ultimately complete

stochastic sampling decision making can be done on-board and in real-time.

5 Process Self-adjoint Systems

In the previous section we explained that in general the adjoint state equation

is not a conservation law. Consequently the stochastic sampling computation

of adjoint state distributions is a more difficult job than estimation of the state

PDFs. In this section we consider a special type of dynamical systems in which

the adjoint state evolution is a conservation law, and we call this type of systems

process self-adjoint.

Let us assume that that the state pdf evolution is described by:

∂ρ(x, t)
∂t

= F ′(u)ρ(x, t) (36)

ρ(x, 0) = ρ0(x) (37)

and the adjoint state distribution evolution is given by:

∂π(x, t)
∂t

= −F ′(u)π(x, t) (38)

π(x, T ) = −w(x) (39)

where the operator F (u) = (Fu(u(t)) + F∂) and the operator F ′(u) is:

F ′(u) = (Fu(u(t)) + F∂)′ = (F ′u(u(t))− F∂) (40)

26



In other words, the adjoint state distribution evolution is rewritten as:

∂π(x, t)
∂t

= −(F ′u(u(t))− F∂)π(x, t) (41)

π(x, T ) = −w(x) (42)

If we rewrite this equation backward in time we obtain:

∂π(x, T − τ)
∂τ

= (F ′u(u(t))− F∂)π(x, T − τ) (43)

π(x, τ = 0) = −w(x) (44)

Finally, introducing the substitution φ(τ) = −π(x, T − τ) we can obtain the

backward solution of the adjoint state evolution in the form of a forward time

PDE system:

∂φ(x, τ)
∂τ

= (F ′u(u(t))− F∂)φ(x, τ) (45)

φ(x, 0) = w(x) (46)

Let us consider the special case in which the discrete state transition matrix

satisfies F ′u(u(t)) = Fu(u(t)). Then we can conclude that the adjoint state evo-

lution Eq. 5 (i.e., its equivalent backward time evolution Eq. 5) is conservation

law. Consequently, if w(x) is a function of the same type as the state PDF,

then the adjoint state distribution π, i.e., its equivalent φ can be considered the

co-state probability density function of some stochastic process which we will

explain briefly.

The condition F ′u(u(t)) = Fu(u(t)) implies that the transition rate from the

discrete state i to the discrete state j is the same in the opposite direction, i.e.,

from the state j to the state i. Interestingly enough, under assumption that

27



F ′u(u(t)) = Fu(u(t)) the robotic system can be considered process self-adjoint.

In other words, the adjoint state evolution corresponds to a stochastic process.

For example, let us consider the vehicle of which dynamics can be represented by

three discrete and three continuous states (see Fig. 9a and vehicle illustration

in Fig. 10). The first discrete state corresponds to the vehicle moving without

.
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Figure 9: a) The stochastic process describing the evolution of the state PDF,
b) The stochastic process describing the evolution of the adjoint state PDF
backward in time φ

change of direction. The second and the third state correspond to the increase

and decrease of the angle of the moving direction, respectively. To obtain a

stochastic process describing evolution of the adjoint state distributions we need

each dynamics of the discrete state i, fi substitute with −fi and keep in mind

that this stochastic process describes the adjoint state backward in time. The

resulting adjoint process is depicted in Fig. 9b. The generation of this stochastic

process can be performed using the algorithm presented in Section 3.

To summarize, evaluation of the state ρ(x, t) and co-state π(x, t) PDFs for

this case will be based on stochastic samples from trajectories defined by models

presented in Fig. 9. The trajectories need to be generated and collected in 3D

since we deal with the three continuous state variables. The 2D projection of

these 3D trajectories is illustrated in Fig. 10. The distribution of initial points

of trajectories generated forward in time relates to ρ0(x) in the region A (see

Fig. 10) while the initial distribution of trajectories generated backward in
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Figure 10: a) The vehicle and continuous state variables PDF, b) The forward
and backward paths starting from the region A and B, respectively

time relates to w(x) in the region B. In this respect the Hamiltonian Eq. 23

measures the match between forward and backward trajectories and its value

can be used for control improvement, i.e., to provide a better match. Although

we discuss the special case, this is an elegant example providing rationale behind

the ant-optimization [3] algorithms.

6 Conclusions and Future work

In this research project we study a theoretical possibility of solving the opti-

mal control problems based on stochastic sampling. We came to the conclusion

that the main difficulty in this approach is evaluation of the adjoint state dis-

tributions. While proposed Monte Carlo algorithm is numerically efficient, its

convergence is not guaranteed. An alternative approach to avoid the difficulty

is to consider a class of robotic systems for which the adjoint state distribution

evolution corresponds to the stochastic process. We call such systems process

self-adjoint. In this case both state PDF and co-state PDF contributing to

the Hamiltonian can be evaluated based on stochastic samples. Based on the

process self-adjoint systems we can establish a relation between the stochastic

sampling stochastic optimal control and ant-optimization algorithms [3].

Future work along this approach will be focused on examples based on algo-
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rithms presented here. We are also considering establishing relation between the

stochastic sampling methods and Hamilton-Jacobi-Bellman equation in order to

solve the stochastic optimal control problems in a closed loop.

The main idea behind our work is to solve stochastic optimal control prob-

lems based on stochastic sampling. We believe that in this way we can employ

modern statistical methods and control theory to solve complex stochastic op-

timal control problems for multi-robot systems in real-time.
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Abstract

Motility is an important property of immune system cells. It provides cells

with the ability to perform their function not only at the right time, but also

at the right place. In this paper, we introduce the problem of modeling and

estimating an effective force field directing cell movement by the analysis of

intravital video microscopy. A computational approach is proposed for solving

this problem without dealing with a parameterized spatial model of the field

in order to avoid potential errors due to inaccurate spatial model assumptions.

We consider the dynamics of cells similar to the dynamics of distributed agents

typically used in the field of swarm robotics. The method utilizes a fixed-

interval Kalman filter based smoother. Its application results in a map giving

the intensity and direction of the effective force field. The results show that real-

time video images are a source of data, enabling us to visualize intriguing spatio-

temporal phenomena inside immune system organs. The proposed approach can

fill the existing gap between contemporary technology and quantitative data

analyses present in the field of biosystems.
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• Video microscopy provides information about immune system cells residing in tissues of living organisms.

• Force Localization And Mapping (FLAM) is the problem of estimating an effective force field 
influencing cell motility from intravital video microscopy. 

• For solving the FLAM, we propose a computational approach without dealing with a parameterized
spatial model of the field. In this way, we avoid potential errors due to inaccurate spatial model assumptions. 

• The estimation is based on the individual agent motility model.

• No alternative microscopy method exists for measuring these forces.

• The computational method does not interfere with the physiological condition inside organs.

FORCE LOCALIZATION AND MAPPING FROM INTRAVITAL 
VIDEO MICROSCOPY

Original microscopy video *  Force field estimation  

Force profile: 

horizontal component constant

vertical component sinusoidal

Data Analysis

data aligned to the point (0,0) 

Standard approach:

analysis of the obtained track distribution  

In this example, we can easily identify 
the horizontal force component, but the 
analysis does not provide an insight into 
the vertical force component. 

Force Field

Agent Dynamics

Force Estimation

Observation

Model

Map of Force Field

Robotic scenario *

T-cells - dendritic cells

Position :

Velocity :

Force :

Measured positions:

Data are known; this is a smoothing, 
not a filtering problem 

Algorithm

1. Estimate the force as if a constant for each trajectory i

2. “Average” all estimates to obtain the constant force term 

3. Estimate the force along each i trajectory initially assuming 
that it has value of the constant force obtained in Step 2 above

4. “Average” all estimates that belong to the same grid cell

( Smoother           )0=Fσ

( Smoother           )0≠Fσ

Intracellular 

Signal Processing

Cell Structure 

and Locomotion ∫
Mechanical forces

Extracellular

signals

Measurement noise  Cell motility

Agent Dynamics Model

Agent Dynamics Model

Data :

• An optimal smoother applied to force estimations as sensed by individual cells.

• Estimations averaged over a grid of rectangular regions taking into account the 
estimation covariances. 

• The force field is estimated and visualized by the average forces assigned to each 
rectangular region. No analytical constraints on the force field. 

• To apply the method to the analysis of imaging data routinely, a rapid adjustment of 
the estimator parameters is important.

• Our results show that real-time video images are a source of data, enabling us force 
visualization, which can be used for studying intriguing spatio-temporal phenomena 
inside immune system organs.

• The problem formulation and the solution fill the existing gap between contemporary 
technology and  quantitative data analyses present in the field.
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